521 research outputs found

    Shape-shifting and instabilities of plates and shells

    Get PDF
    Slender structures like plates and shells -- for which at least one dimension is much smaller than the others -- are lightweight, flexible, and offer considerable strength with little material. As such, these structures are abundant in nature (e.g. flower petals, eggshells, and blood vessels) and design (e.g. bridge decks, fuel tanks, and soda cans). However, with slenderness comes suceptibility to large and often sudden deformations, which can be wildly nonlinear, as bending is energetically preferable to stretching. Though once considered categorically undesirable, these instabilities are often coveted nowadays in the engineering community. They provide mechanical explanations for observations in nature like the wrinkled structure of the brain or the snapping mechanism of the Venus fly trap, and when precisely controlled, enable the design of functional devices like artificial muscles or self-propelling microswimmers. As a prerequisite, these achievements require a thorough understanding of how thin structures "shape-shift" in response to stimuli and confinement. Advancing this fundamental knowledge is the goal of this thesis. In the first two chapters, we consider the shape-selection of shells and plates that are confined by their environment. The shells are made by residual swelling of silicone elastomers, a process that mimics differential growth, and causes initially flat structures to irreversibly morph into curved shapes. Flattening the central region forces further reconfiguration, and the confined shells display multi-lobed buckling patterns. These experiments, finite element (FE) simulations, and a scaling argument reveal that a single geometric confinement parameter predicts the general features of this shape-selection. Next, in experiments and molecular dynamics (MD) simulations, we constrain intrinsically flat sheets in the same manner, so that their center remains flat when we quasi-statically force them through a ring. In the absence of planar confinement, these sheets form a well-studied conical shape (the developable cone or d-cone). Our annular d-cone buckles circumferentially into patterns that are qualitatively similar to the confined shells, despite the distinct curvatures and loading methods. This is explained by the dominant role of confinement geometry in directing deformation, which we uncover via a scaling argument based on the elastic energy. There are also marked differences between the way plates and shells change shape, which we highlight when we investigate the rich dynamics of reconfiguration. In the final two chapters, we demonstrate how mechanics, geometry, and materials can inform the design of structures that use instabilities to function. We observe in experiments that dynamic loading causes a spherical elastomer shell to buckle at ostensibly subcritical pressures, following a substantial time delay. To explain this, we show that viscoelastic creep deformation lowers the critical load in the same predictable, quantifiable way that a growing defect would in an elastic shell. This work offers a pathway to introduce tunable, time-controlled actuation to existing mechanical actuators, e.g. pneumatic grippers. The final chapter aims at reducing the energy input required for bistable actuators, wherein snap-through instability is typically induced by a stimulus applied to the entire shell. To do so, we combine theory with 1D finite element simulations of spherical caps with a non-homogeneous distribution of stimuli--responsive material. We demonstrate that restricting the active area to the shell boundary allows for a large reduction in its size, while preserving snap-through behavior. These results are stimulus-agnostic, which we demonstrate with two sets of experiments, using residual swelling of bilayer silicone elastomers as well as a magneto-active elastomer. Our findings elucidate the underlying mechanics, offering an intuitive route to optimal design for efficient snap-through.2022-05-06T00:00:00

    Wrinkling and developable cones in centrally confined sheets

    Full text link
    Thin sheets respond to confinement by smoothly wrinkling, or by focusing stress into small, sharp regions. From engineering to biology, geology, textiles, and art, thin sheets are packed and confined in a wide variety of ways, and yet fundamental questions remain about how stresses focus and patterns form in these structures. Using experiments and molecular dynamics (MD) simulations, we probe the confinement response of circular sheets, flattened in their central region and quasi-statically drawn through a ring. Wrinkles develop in the outer, free region, then are replaced by a truncated cone, which forms in an abrupt transition to stress focusing. We explore how the force associated with this event, and the number of wrinkles, depend on geometry. Additional cones sequentially pattern the sheet, until axisymmetry is recovered in most geometries. The cone size is sensitive to in-plane geometry. We uncover a coarse-grained description of this geometric dependence, which diverges depending on the proximity to the asymptotic d-cone limit, where the clamp size approaches zero. This work contributes to the characterization of general confinement of thin sheets, while broadening the understanding of the d-cone, a fundamental element of stress focusing, as it appears in realistic settings.Comment: 11 pages, 9 figure

    Delayed buckling of spherical shells due to viscoelastic knockdown of the critical load

    Get PDF
    We performed dynamic pressure buckling experiments on defect-seeded spherical shells made of a common silicone elastomer. Unlike in quasi-static experiments, shells buckled at ostensibly subcritical pressures, i.e. below the experimentally determined critical load at which buckling occurs elastically, often following a significant delay period from the time of load application. While emphasizing the close connections to elastic shell buckling, we rely on viscoelasticity to explain our observations. In particular, we demonstrate that the lower critical load may be determined from the material properties, which is rationalized by a simple analogy to elastic spherical shell buckling. We then introduce a model centred on empirical quantities to show that viscoelastic creep deformation lowers the critical load in the same predictable, quantifiable way that a growing defect would in an elastic shell. This allows us to capture how both the deflection at instability and the time delay depend on the applied pressure, material properties and defect geometry. These quantities are straightforward to measure in experiments. Thus, our work not only provides intuition for viscoelastic behaviour from an elastic shell buckling perspective but also offers an accessible pathway to introduce tunable, time-controlled actuation to existing mechanical actuators, e.g. pneumatic grippers.Accepted manuscrip

    Efficient snap-through of spherical caps by applying a localized curvature stimulus

    Get PDF
    In bistable actuators and other engineered devices, a homogeneous stimulus (e.g., mechanical, chemical, thermal, or magnetic) is often applied to an entire shell to initiate a snap-through instability. In this work, we demonstrate that restricting the active area to the shell boundary allows for a large reduction in its size, thereby decreasing the energy input required to actuate the shell. To do so, we combine theory with 1D finite element simulations of spherical caps with a non-homogeneous distribution of stimulus-responsive material. We rely on the effective curvature stimulus, i.e., the natural curvature induced by the non-mechanical stimulus, which ensures that our results are entirely stimulus-agnostic. To validate our numerics and demonstrate this generality, we also perform two sets of experiments, wherein we use residual swelling of bilayer silicone elastomers-a process that mimics differential growth-as well as a magneto-elastomer to induce curvatures that cause snap-through. Our results elucidate the underlying mechanics, offering an intuitive route to optimal design for efficient snap-through.CMMI-1824882 - National Science Foundation; CMMI-1824882 - National Science FoundationAccepted manuscrip

    Juxtaposing BTE and ATE – on the role of the European insurance industry in funding civil litigation

    Get PDF
    One of the ways in which legal services are financed, and indeed shaped, is through private insurance arrangement. Two contrasting types of legal expenses insurance contracts (LEI) seem to dominate in Europe: before the event (BTE) and after the event (ATE) legal expenses insurance. Notwithstanding institutional differences between different legal systems, BTE and ATE insurance arrangements may be instrumental if government policy is geared towards strengthening a market-oriented system of financing access to justice for individuals and business. At the same time, emphasizing the role of a private industry as a keeper of the gates to justice raises issues of accountability and transparency, not readily reconcilable with demands of competition. Moreover, multiple actors (clients, lawyers, courts, insurers) are involved, causing behavioural dynamics which are not easily predicted or influenced. Against this background, this paper looks into BTE and ATE arrangements by analysing the particularities of BTE and ATE arrangements currently available in some European jurisdictions and by painting a picture of their respective markets and legal contexts. This allows for some reflection on the performance of BTE and ATE providers as both financiers and keepers. Two issues emerge from the analysis that are worthy of some further reflection. Firstly, there is the problematic long-term sustainability of some ATE products. Secondly, the challenges faced by policymakers that would like to nudge consumers into voluntarily taking out BTE LEI

    Penilaian Kinerja Keuangan Koperasi di Kabupaten Pelalawan

    Full text link
    This paper describe development and financial performance of cooperative in District Pelalawan among 2007 - 2008. Studies on primary and secondary cooperative in 12 sub-districts. Method in this stady use performance measuring of productivity, efficiency, growth, liquidity, and solvability of cooperative. Productivity of cooperative in Pelalawan was highly but efficiency still low. Profit and income were highly, even liquidity of cooperative very high, and solvability was good

    Search for stop and higgsino production using diphoton Higgs boson decays

    Get PDF
    Results are presented of a search for a "natural" supersymmetry scenario with gauge mediated symmetry breaking. It is assumed that only the supersymmetric partners of the top-quark (stop) and the Higgs boson (higgsino) are accessible. Events are examined in which there are two photons forming a Higgs boson candidate, and at least two b-quark jets. In 19.7 inverse femtobarns of proton-proton collision data at sqrt(s) = 8 TeV, recorded in the CMS experiment, no evidence of a signal is found and lower limits at the 95% confidence level are set, excluding the stop mass below 360 to 410 GeV, depending on the higgsino mass

    Severe early onset preeclampsia: short and long term clinical, psychosocial and biochemical aspects

    Get PDF
    Preeclampsia is a pregnancy specific disorder commonly defined as de novo hypertension and proteinuria after 20 weeks gestational age. It occurs in approximately 3-5% of pregnancies and it is still a major cause of both foetal and maternal morbidity and mortality worldwide1. As extensive research has not yet elucidated the aetiology of preeclampsia, there are no rational preventive or therapeutic interventions available. The only rational treatment is delivery, which benefits the mother but is not in the interest of the foetus, if remote from term. Early onset preeclampsia (<32 weeks’ gestational age) occurs in less than 1% of pregnancies. It is, however often associated with maternal morbidity as the risk of progression to severe maternal disease is inversely related with gestational age at onset2. Resulting prematurity is therefore the main cause of neonatal mortality and morbidity in patients with severe preeclampsia3. Although the discussion is ongoing, perinatal survival is suggested to be increased in patients with preterm preeclampsia by expectant, non-interventional management. This temporising treatment option to lengthen pregnancy includes the use of antihypertensive medication to control hypertension, magnesium sulphate to prevent eclampsia and corticosteroids to enhance foetal lung maturity4. With optimal maternal haemodynamic status and reassuring foetal condition this results on average in an extension of 2 weeks. Prolongation of these pregnancies is a great challenge for clinicians to balance between potential maternal risks on one the eve hand and possible foetal benefits on the other. Clinical controversies regarding prolongation of preterm preeclamptic pregnancies still exist – also taking into account that preeclampsia is the leading cause of maternal mortality in the Netherlands5 - a debate which is even more pronounced in very preterm pregnancies with questionable foetal viability6-9. Do maternal risks of prolongation of these very early pregnancies outweigh the chances of neonatal survival? Counselling of women with very early onset preeclampsia not only comprises of knowledge of the outcome of those particular pregnancies, but also knowledge of outcomes of future pregnancies of these women is of major clinical importance. This thesis opens with a review of the literature on identifiable risk factors of preeclampsia

    Search for anomalous production of events with three or more leptons in pp collisions at √s = 8TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.A search for physics beyond the standard model in events with at least three leptons is presented. The data sample, corresponding to an integrated luminosity of 19.5fb-1 of proton-proton collisions with center-of-mass energy s=8TeV, was collected by the CMS experiment at the LHC during 2012. The data are divided into exclusive categories based on the number of leptons and their flavor, the presence or absence of an opposite-sign, same-flavor lepton pair (OSSF), the invariant mass of the OSSF pair, the presence or absence of a tagged bottom-quark jet, the number of identified hadronically decaying τ leptons, and the magnitude of the missing transverse energy and of the scalar sum of jet transverse momenta. The numbers of observed events are found to be consistent with the expected numbers from standard model processes, and limits are placed on new-physics scenarios that yield multilepton final states. In particular, scenarios that predict Higgs boson production in the context of supersymmetric decay chains are examined. We also place a 95% confidence level upper limit of 1.3% on the branching fraction for the decay of a top quark to a charm quark and a Higgs boson (t→cH), which translates to a bound on the left- and right-handed top-charm flavor-violating Higgs Yukawa couplings, λtcH and λctH, respectively, of |λtcH|2+|λctH|2<0.21

    Measurement of associated W plus charm production in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe
    corecore